

Journal of Organometallic Chemistry 510 (1996) 291-295

Synthesis and characterisation of $[(C_5Me_4R)_2NbS_2]_2M$ complexes (M = Fe, Co; R = Me, Et): organometallic tetrathiometalates with niobocene ligands

Henri Brunner^a, Marek M. Kubicki^b, Günther Gehart^a, Erwin Lehrl^a, Dominique Lucas^b, Walter Meier^a, Yves Mugnier^b, Bernd Nuber^c, Bernhard Stubenhofer^a, Joachim Wachter^{a,*}

^a Institut für Anorganische Chemie der Universität Regensburg, D-93040 Regensburg, Germany ^b Laboratoire de Synthèse et d'Electrosynthèse Organométalliques, Université de Bourgogne, F-21100 Dijon, France ^c Anorganisch-chemisches Institut der Universität Heidelberg, D-69120 Heidelberg, Germany

Received 18 August 1995

Abstract

Irradiation of $Cp_2^* Nb(\eta^2 - S_2)H (Cp^* = C_5 Me_5)$ 1a in the presence of $Fe(CO)_5$ gives the CO-free complex $[Cp_2^* NbS_2]_2$ Fe 2a. The core of 2a contains an FeS₄ tetrahedron which is ligated by two niobocene ligands as shown by X-ray diffraction analysis. In the reaction of 1a or $Cp_2^* Nb(\eta^2 - S_2)H (Cp^* = C_5 Me_4Et)$ 1b with $Co_2(CO)_8$, compounds 3a and 3b of the same type are formed. Electrochemical studies of 2a and 3a,b show that they undergo three reversible $1e^-$ steps. The oxidation of 3b exerts a considerable influence on its absorption spectrum. A qualitative EHMO analysis is in agreement with a strong delocalisation of electron density over the whole NbS_2MS_2Nb system.

Keywords: Iron; Cobalt; Niobocene; Tetrathiometalates

1. Introduction

Organometallic tetrathiometalates represent an interesting subgroup of polynuclear tetrathiometalate complexes [1]. Of particular interest are their electronic structures, electrochemical behaviour [2], and potential for new materials [3]. Up to now they have been prepared in metathesis reactions between MS_4^{n-} salts (n = 1, M = Re; n = 2, M = Mo, W) and organometallic halide derivatives bearing diene, arene, cyclopentadienyl and/or carbonyl ligands [1-4]. The neutral products may be of di- or trinuclear character. The MS₄ unit provides two and six electrons respectively, and the organometallic fragments in relatively low oxidation states serve as "terminal" ligands. Alternatively, the reaction of $(C_5H_5)_2NbH_3$ and $Mo(S^tBu)_4$ gives $[(C_5H_5)_2 NbS_2]_2$ Mo, for which no properties have been described except its structure [5]. We now wish to report on a new synthetic approach for trinuclear complexes starting from organometallic sulphido complexes, e.g. niobocene sulphides **1a**, **1b** and binary metal carbonyls, and on first investigations of their structural and electronic properties.

2. Results and discussion

Irradiation of a THF solution of $Cp_2^* Nb(\eta^2 - S_2)H$ [6] ($Cp^* = C_5 Me_5$) **1a** and 0.5 equiv. Fe(CO)₅ gives a dark solution from which the green-brown CO-free complex **2a** is obtained in 65% yield after column chromatography. CO-containing intermediates have been observed but could not be isolated. Analytical and mass spectroscopic data are consistent with the composition $Cp_4^* Nb_2 S_4 Fe$. The ¹H NMR spectrum of **2a** exhibits a singlet at 1.83 ppm. Reaction of **1a** with Fe₂(CO)₉ also gives **2a**, but it does not require irradiation.

The crystal structure of 2a (Fig. 1, Table 1) shows a linear Nb-Fe-Nb arrangement comprising a central FeS₄ tetrahedron and the niobocene units in an orthogonal orientation to each other. The Nb-Fe distances of

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05930-X

Fig. 1. Crystal structure of $[(C_5Me_5)_2NbS_2]_2$ Fe 2a.

3.006 Å seem to be a border line case for a metal-metal bond. EHMO calculations [7] suggest strong bonding through the sulphur bridges and a weak Nb^{\cdots} Fe interaction [8]. The Fe-S and Nb-S distances fall in the expected range (2.257(4) Å ($d_{\text{Fe}-S}$) to 2.373(4) Å ($d_{\text{Nb}-S}$)).

The reaction of **1a** or $Cp_2^x Nb(\eta^2 - S_2)H$ [6] ($Cp^x =$ $C_5 Me_4 Et$) **1b** with $Co_2(CO)_8$ (Nb:Co = 2:1; toluene, 20 °C, 15 h) gives dark red $Cp_4^{(*)}Nb_2S_4Co$ **3a,b** in 50–54% yield respectively. Upon variation of stoichiometry (Nb:Co = 1:2) and reaction conditions (toluene, 20 $^{\circ}$ C, 30 min) **1b** and $Co_2(CO)_8$ give, after chromatographic workup, $Cp_2^{x}NbS_2Co(CO)_2$ **4b** as the only product (47%) yield). As **4b** reacts with **1b** to give **3b** in 30% yield, it may be considered as an intermediate product in the reaction of 1b with $Co_2(CO)_8$ (Scheme 1). 4b is a diamagnetic 16e compound with respect to Co in which the $Cp_2^{\times}NbS_2$ unit formally serves as a chelate ligand. In this regard it resembles a dithiocarboxylato ligand [9] in which the central carbon is substituted by the $Cp_2^{x}Nb$ molety. The $\nu(CO)$ absorptions in the infrared are consistent with a bent M(CO)₂ fragment.

The electronic structures of the sulphido-bridged trinuclear complexes 2 and 3 may be formally described

Table 1

Sele	cted	bond	lengths	(A)	and	angles	(°)	for	Cp ₄ *	Nb ₂ S	S ₄ Fe	2a
------	------	------	---------	-----	-----	--------	-----	-----	-------------------	-------------------	-------------------	----

Fe(1)-Nb(1)	3.008(2)	S(1) - Fe(1) - S(3)	113.4(1)
Fe(1)~Nb(2)	3.015(2)	S(2) - Fe(1) - S(3)	112.1(1)
Fe(1) - S(1)	2.262(4)	Nb(2)-Fe(1)-S(3)	51.0(1)
Fe(1) - S(2)	2.257(4)	Nb(1)-Fe(1)-S(4)	126.0(1)
Fe(1) - S(3)	2.262(4)	S(1) - Fe(1) - S(4)	112.7(1)
Fe(1) - S(4)	2.282(4)	S(2) - Fe(1) - S(4)	115.3(1)
Nb(1)-S(1)	2.368(4)	Nb(2)-Fe(1)-S(4)	50.8(1)
Nb(1) - S(2)	2.371(3)	S(3)-Fe(1)-S(4)	101.9(1)
Nb(1) - S(3)	2.373(4)	Fe(1)-Nb(1)-S(1)	48.0(1)
Nb(2)-S(4)	2.368(3)	Fe(1)-Nb(1)-S(2)	47.8(1)
		S(1)-Nb(1)-S(2)	95.6(1)
Nb(1)-Fe(1)-S(1)	51.1(1)	Fe(1)-S(1)-Nb(1)	81.0(1)
Nb(1)-Fe(1)-S(2)	51.2(1)	Fe(1)-S(2)-Nb(1)	81.0(1)
S(1) - Fe(1) - S(2)	101.9(1)	Fe(1)-Nb(2)-S(3)	47.9(1)
Nb(1)-Fe(1)-Nb(2)) 176.6(1)	Fe(1)-Nb(2)-S(4)	48.4(1)
S(1)-Fe(1)-Nb(2)	127.7(1)	S(3) - Nb(2) - S(4)	96.2(1)
S(2) - Fe(1) - Nb(2)	130.3(1)	Fe(1) - S(3) - Nb(2)	81.1(1)
Nb(1)-Fe(1)-S(3)	132.2(1)	Fe(1) = S(4) = Nb(2)	80.8(1)

by the resonance forms **A** and **B**. Thus, type **A** would be a bischelate of the metalladithiocarboxylato anion $[Cp_2^{(*)}Nb^VS_2]^-$ arising from S–S bond breaking and hydride abstraction in **1a,b**, whereas type **B** represents a derivative of a "conventional" tetrathiometalate (MS_4^{2-}) with two niobocene(III) ligands $(Cp_2^{(*)}Nb^+)$. Delocalised bond systems have already been established for other tetrathiometalates with organometallic components [1a].

A qualitative EHMO analysis carried out on unsubstituted $[Cp_2NbS_2]_2Co$ is also in agreement with a strong delocalisation of electron density over the whole NbS_2CoS_2Nb system. The analysis shows that the valence molecular orbitals 18e, 7b₁, and 12a₁ (Fig. 2) are

Fig. 2. Qualitative diagram of valence orbitals for the model complex $[(C_5H_5)_2NbS_2]_2Co$ in D_{2d} symmetry.

essentially formed by the CoS_4 fragment (87, 72, and 92%), whereas the $13a_1$ and especially $12b_2$ orbitals are delocalised over the seven heavy atoms. While the 12b₂ orbital is slightly polarised towards Co (56% vs 25% of the two Nb atoms), 13a₁ exhibits a 70% participation of the niobium atoms. Thus, the charge transfer transitions in the UV-visible spectra of **3a,b** should involve the 13a, orbital in excited states. In a simple ligand field model, the allowed transitions are $7b_1 \rightarrow 18e$ and 18e \rightarrow 13a₁. However, the excited state $(7\dot{b}_1)^1(18e)^1(13a_1)^1$ in the strong field approach is not forbidden. An absorption at 565 nm in the spectrum of 3b (Fig. 3) may be assigned to the ligand-to-metal charge transfer $18e \rightarrow$ $13a_1$ of the type $CoS_4 \rightarrow Nb$, owing to a 46% participation of the sulphur ligands in the 18e orbital. Compared with $[Co(WS_4)_2]^{2-}$ the band is more than 200 nm shifted to high energy [10]. The ESR signal could not be detected. The EHMO calculations suggest that the unpaired electron of the molecule occupies a doubly degenerated level which gives rise to a strong spin-orbit coupling and thus to a broadening of the ESR signal.

The electrochemical behaviour of the new complexes **2a** and **3b** has been studied. Both compounds exhibit three reversible $1e^-$ steps at -1.06, -0.03, and +1.30 V for **2a**, and at -1.50, -0.02, and +1.27 V for **3b** (Fig. 4). Irreversible waves are observed at -2.87 V (**2a**) and -2.66 V (**3b**). The only difference between the compounds concerns the first reduction potential. It is interesting to note that **2a** and **3b** are more redox-active than other organometallic tetrathiometalates [1a,2]. Concomittant with the electron transfer, a change in the absorption spectra is observed as shown for the first oxidation step of **3b** in Fig. 3.

In conclusion, a new synthetic access to organometallic tetrathiometalates is described. Now, the central "inorganic" part arises from a binary transition metal carbonyl, and electronic and spectroscopic characteristics should provide new information on the bonding

Fig. 3. Absorption spectra of **3b** before (----) and after (----) le⁻ oxidation at +0.15 V/ECS.

Fig. 4. Cyclic voltammogram of **3b** in a 0.2 M solution of NBu₄PF₆ in THF. Starting potential: -0.15 V, sweep rate: 0.1 V s⁻¹ (the dashed line corresponds to a different current scale (×2)).

system in these compounds. An extension to other metals is under way along with studies of redox chemistry and spectroscopic behaviour.

3. Experimental section

Experimental and spectroscopic techniques as well as the preparation of $Cp_2^{(*)}NbS_2H$ **1a,b** are reported in Ref. [6c].

Voltammetric analyses were carried out in a standard three-electrode cell with a Tacussel UAP4 unit. The reference electrode was a saturated calomel electrode separated from the solution by a sintered glass disk. The auxiliary electrode was a Pt wire. For all voltammetric measurements the working electrode was a vitreous carbon disk electrode. For the polarograms, a three-electrode Tacussel Tipol polarograph was used. The dropping Hg electrode characteristics were $m = 3 \text{ mg s}^{-1}$ and E = 0.5 s. The controlled potential electrolyses were performed with an Amel 552 potentiostat coupled to an Amel 721 electronic integrator. In all cases the electrolyte was a 0.2 M solution of "Bu₄NPF₆ in THF.

3.1. Synthesis of [Cp^{*}₂NbS₂]₂Fe 2a

A solution of 220 mg (0.52 mmol) of **1a** and 50 mg (0.255 mmol) of Fe(CO)₅ in 200 ml of THF was irradiated for 2 h (Hg immersion lamp, 150 W, watercooled jacket), while the solution quickly turned dark. After evaporation of the solvent the dark residue was dissolved in 10 ml of toluene. Chromatography on SiO₂ (column $17 \times 3 \text{ cm}^2$) first gave thin coloured bands which were discarded. With toluene/ether 40:1 a dark green-brown band was eluted, containing 2a in 65% yield.

2a: Anal. Found: C, 55.81; H, 6.55. $C_{40}H_{60}FeNb_2S_4$ (910.8). Calc.: C, 55.29; H, 6.78% (calculated with 0.7 toluene). FD mass spectroscopy (MS) (from toluene): 910.0. ¹H NMR (60 MHz, CDCl₃): 1.83 ppm. UV (CH₂Cl₂): ϵ (440 nm) = 9590, ϵ (584 nm) = 4818 M⁻¹ cm⁻¹.

3.2. The reaction of **1b** with $Co_2(CO)_8$

Synthesis of $[Cp_2^{(*)}NbS_2]_2Co 3a,b$.

To the solution of 0.48 mmol of 1a,b in 50 ml of toluene, 41 mg (0.12 mmol) of $Co_2(CO)_8$ were added while the orange colour immediately turned dark brown. After stirring for 15 h at room temperature the solvent was evaporated, the residue dissolved in 10 ml of toluene and chromatographed on silica gel (column $20 \times 3 \text{ cm}^2$). Elution with toluene gave a dark red band containing **3a,b** in 50–54% yield.

3a: Anal. Found: C, 52.29; H, 6.76. $C_{40}H_{60}CoNb_2S_4$ (913.9). Calc.: C, 52.57; H, 6.57%. FD-MS (from toluene): 913.2. ¹H NMR (250 MHz, CDCl₃): 5.87 ppm ($h_{1/2} = 178$ Hz). UV (CH₂Cl₂): ϵ (332 nm) = 20350, ϵ (399 nm) = 10350(sh), ϵ (563 nm) = 6224 M⁻¹ cm⁻¹.

3b: Anal. Found: C, 53.96; H, 7.06. $C_{44}H_{68}CoNb_2S_4$ (970.0). Calc.: C, 54.48; H, 7.07%. FD-MS (from toluene): 969.7. ¹H NMR (250 MHz, CDCl₃): 6.01 ppm ($h_{1/2} = 75.9$ Hz). UV (CH₂Cl₂): ϵ (356 nm) = 20373, ϵ (385 nm) = 10812(sh), ϵ (565 nm) = 6716 M⁻¹ cm⁻¹.

Synthesis of $Cp_2^{x}NbS_2Co(CO)$, **4b**.

To the solution of 150 mg (0.44 mmol) of $\text{Co}_2(\text{CO})_8$ in 50 ml of toluene a solution of 200 mg (0.44 mmol) of **1b** in 20 ml of toluene was added dropwise at room temperature under vigorous stirring. After 30 min the solvent was evaporated and the residue extracted with 15 ml of toluene/pentane 1:1. The soluble fraction was chromatographed on SiO₂ (column 20 × 3 cm²). With toluene/pentane 1:1 a brown band was eluted, containing **4b** in 47% yield.

4b: Anal. Found: C, 50.11; H, 5.85. $C_{24}H_{34}$ -CoNbO₂S₂ (570.3). Calc.: C, 50.57; H, 6.01%. FD-MS (from toluene): 570.6. ¹H NMR (250 MHz, CDCl₃): 0.82 (t, 6H, CH₃), 1.64 (s, 12H, CH₃), 1.65 (s, 12H, CH₃), 1.91 (q, 4H, CH₂) ppm. IR (toluene): ν_{CO} 2002 vs, 1950 s cm⁻¹.

3.3. Crystallographic data for 2a

 $C_{40}H_{60}Nb_2FeS_4 \cdot 0.7C_7H_8$, orthorhombic D_2^4 , $P2_12_12_1$ (No. 19); cell: a = 10.738(5), b = 13.248(4), c = 33.18(1) Å, V = 4720.1 Å³, Z = 4; empirical absorption correction: 8 reflections $6.0 < 2055.0^\circ$. Transmission factor (min/max) 0.74/1.00, d(calc) = 1.33 g cm⁻³, μ 0.96 mm⁻¹. Intensity data were measured on a Syntex R3 diffractometer. Mo K α radiation, graphite monochromator, 6560 unique observed reflections, 4770

Table 2

Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for Cp₄ Nb₂S₄Fe **2a**

Atom	x	у	z	U_{eq}^{a}
Fe(1)	2927(2)	11265(1)	8625(1)	58(1)
Nb(1)	2027(1)	9433(1)	8176(1)	51(1)
Nb(2)	3975(1)	13090(1)	9049(1)	47(1)
S(1)	3504(3)	9634(3)	8700(1)	74(1)
S(2)	1367(3)	11141(2)	8171(1)	66(1)
S(3)	2293(3)	11997(3)	9206(1)	74(1)
S(4)	4542(3)	12283(3)	8439(1)	60(1)
cú	2582(19)	8455(16)	7547(5)	114(9)
C(2)	3677(19)	8598(15)	7793(6)	115(9)
C(3)	4041(14)	9607(12)	7776(4)	82(6)
C(4)	3082(16)	10080(12)	7572(4)	83(6)
C(5)	2225(14)	9415(14)	7428(4)	78(6)
C(6)	2229(14)	7487(14)	7374(5)	162(10)
$\alpha(7)$	4388(21)	7859(20)	7921(7)	245(21)
C(8)	5250(12)	10004(13)	7921(7)	117(8)
C(0)	3107(16)	11130(13)	7422(5)	122(8)
C(10)	1206(17)	0605(18)	7422(3)	122(0) 192(12)
C(10)	-217(12)	9003(18)	8215(6)	102(13)
C(12)	-217(13)	9243(11) 8404(14)	8125(5)	90(7)
C(12)	109(10)	7952(12)	8133(3)	92(7)
C(13)	1006(22)	7632(12) 8420(10)	0391(7)	123(9)
C(14)	225(16)	0420(19)	0720(3)	122(9)
C(15)	323(10) 1242(15)	9200(14)	8161(7)	97(7)
C(10)	-1243(13)	9948(14)	8101(7)	232(17)
C(17)	-5/4(18)	8104(19)	1139(0)	242(18)
C(10)	1505(24)	0820(13)	8354(8)	374(20)
C(19)	1807(20)	8141(21)	9090(6)	3/2(20)
C(20)	1/5(19)	9991(15)	9022(5)	219(14)
C(21)	5902(17)	12119(18)	9230(5)	103(8)
C(22)	0152(15)	13200(16)	9285(5)	102(8)
C(23)	5477(15)	13513(11)	9605(4)	72(5)
C(24)	4/39(10)	12/90(13)	9734(4)	89(0)
C(25)	5050(22)	11892(13)	9517(0)	118(9)
C(20)	0531(20)	11325(18)	8982(0)	353(22)
C(21)	7175(14)	13/38(19)	9061(5)	211(10)
C(28)	5/12(19)	14403(12)	9848(5)	179(12)
C(29)	3843(19)	12919(19)	10123(4)	232(17)
C(30)	4541(20)	10846(11)	9661(7)	199(14)
C(31)	3933(15)	14642(10)	8622(5)	83(6)
C(32)	3905(15)	14976(9)	9001(5)	83(6)
C(33)	2/50(18)	14644(13)	9173(4)	93(7)
C(34)	2115(14)	14169(11)	88/4(6)	90(7)
C(35)	2859(16)	14186(10)	8531(5)	81(6)
C(36)	4882(18)	14874(13)	8298(5)	174(11)
C(37)	4682(18)	15800(11)	9157(6)	217(15)
C(38)	2357(22)	14949(17)	9574(5)	243(17)
C(39)	755(15)	13884(17)	8854(8)	316(23)
C(40)	2481(17)	13900(11)	8099(4)	133(9)
C(41)	2996(22)	8035(17)	331(5)	148(10)
C(42)	2095	7283	369	158(11)
C(43)	1/51	6939	/51	150(11)
C(44)	2309	7346	1094	142(10)
C(45)	3211	8098	1055	210(16)
C(46)	3000	8442	674	177(13)

^a Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

independent reflections $(I \ge 2.5\sigma(I))$. Structure solution by Patterson and difference Fourier methods. **2a** crystallises with 0.7 toluene (disordered) per formula unit. All H atoms were included in calculated positions. R = 0.061, $R_w = 0.057$; residual electron density (max/min) 0.72/-0.65 cÅ⁻³, shift/esd(max) 0.9, GOF = 3.86. Atomic coordinates are given in Table 2 [11].

Acknowledgement

We are grateful to the Deutsche Forschungsgemeinschaft for support of this work.

References and notes

- (a) K.E. Howard, T.B. Rauchfuss and A.L. Rheingold, J. Am. Chem. Soc., 108 (1986) 297; (b) P.A. Shapley, Z. Gebeyehu, N. Zhang and S.R. Wilson, Inorg. Chem., 32 (1993) 5646.
- [2] R. Schäfer, W. Kaim and J. Fiedler, Inorg. Chem., 32 (1993) 3199; R. Schäfer, J. Fiedler, M. Moscherosch and W. Kaim, J. Chem. Soc., Chem. Commun., (1993) 896.
- [3] K.E. Howard, T.B. Rauchfuss and S.R. Wilson, *Inorg. Chem.*, 27 (1988) 3561.
- [4] G.J.S. Adams and M.L.H. Green, J. Organomet. Chem., 208 (1981) 299; T.B. Rauchfuss and C.J. Ruffing, Organometallics,

I (1982) 400; J.A. Kovacs, J.K. Bashkin and R.H. Holm, J. Am. Chem. Soc., 107 (1985) 1785; L.D. Rosenheim and J.W. Mc-Donald, Inorg. Chem., 26 (1987) 3414; K.E. Howard, J.R. Lockemeyer, M.A. Massa, T.B. Rauchfuss, S.R. Wilson and X. Yang, Inorg. Chem., 29 (1990) 4385; M. Kato, M. Kawano, H. Taniguchi, M. Funaki, H. Moriyama, T. Sato and K. Matsumoto, Inorg. Chem., 31 (1992) 26.

- [5] P.M. Boorman, J.F. Fait and G.K.W. Freeman, Polyhedron, 8 (1989) 1762.
- [6] (a) H. Brunner, U. Klement, J. Wachter, M. Tsunoda, J.-C. Leblanc and C. Moise, *Inorg. Chem.*, 29 (1990) 584; (b) H.J. Bach, H. Brunner, J. Wachter, M.M. Kubicki, J.-C. Leblanc, F. Volpato, B. Nuber and M.L. Ziegler, *Organometallics*, 11 (1992) 1403; (c) H. Brunner, G. Gehart, W. Meier, J. Wachter and B. Nuber, J. Organomet. Chem., 454 (1993) 117.
- [7] R. Hoffmann, J. Chem. Phys., 39 (1963) 1397. Standard H_{ii} atomic parameters contained in the CACAO package were used. CACAO: C. Mealli and D.M. Proserpio, J. Chem. Edu., 67 (1990) 399.
- [8] The Nb-Fe overlap integral of 0.08 found for a model of 2a $(C_5H_5 \text{ instead of substituted Cp rings})$ is slightly lower than that calculated for Cp₂Nb(μ -PH₂)(μ -CO)Fe(CO)₃ (0.12) for which the presence of an Nb-Fe bond ($d_{\text{Nb-Fe}} = 2.884$ Å) has been suggested: P. Oudet, M.M. Kubicki and C. Moise, Organometallics, 13 (1994) 4278.
- [9] W. Hieber and M. Gscheidmeier, Chem. Ber., 99 (1966) 2311.
- [10] A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., Int. Ed. Engl., 20 (1981) 934.
- [11] Details of the structure solution and full structural parameters can be requested from the authors.